Песни про менделеева текст

Обновлено: 22.11.2024

Показать полностью 1 4 месяца назад

"Ну это же всё невозможно запомнить"

5 месяцев назад

Дмитрий Иванович, мы Вас потеряли!

Жена смотрела детектив "Химия убийства". Остановила просмотр и спросила какое имя и отчество у Менделеева.

Показать полностью 2 10 месяцев назад

Тот, кто гасит свет. Фейнманий и глубины таблицы Менделеева

Отдавая должное уважаемым западным партнерам Менделеева и лично Роберту Бунзену, у которого Дмитрий Иванович учился в 1859-1861, отметим, что Менделеев вошел в историю науки не как классификатор известного, подобно Линнею, а как визионер, сумевший спрогнозировать еще не открытые элементы и, что более важно в контексте этой статьи – правильно расположить йод и теллур, несмотря на то, что теллур тяжелее йода.

В настоящее время таблицу Менделеева замыкает оганессон (Og) № 118. Он расположен ровно под радоном (№ 86) и, по логике Менделеева, должен представлять собой благородный газ, так как замыкает седьмой период. Но с завершением этого самого удивительного, эфемерного и взрывоопасного периода, вместившего в себя уран, плутоний, менделевий, флеровий и оганессон, вновь актуализируются вопросы: а где заканчивается таблица Менделеева? И до самого ли ее предела соблюдается периодический закон? Удивительно, но впервые ответ на этот вопрос довольно уверенно дал еще Ричард Фейнман.

Скорость электрона в конкретном квантовом состоянии вычисляется по следующей формуле

где Z – атомный номер, соответствующий количеству протонов в ядре атома и, соответственно, количеству электронов, обращающихся вокруг нейтрального атома. Здесь же n – это квантовое состояние электрона, а — постоянная тонкой структуры. Постоянная тонкой структуры вычисляется по формуле

где e – элементарный заряд, h – постоянная Планка, а e0 – диэлектрическая постоянная, также именуемая свободной проницаемостью вакуума.

Соответственно, чем дальше от ядра находится внешняя электронная оболочка атома, тем выше скорость движущегося по ней электрона. Ричард Фейнман вычислил, что при Z = 137 скорость электрона будет чуть ниже, чем скорость света. Если следовать этой логике, элемент с атомным номером 138 существовать не может; в противном случае, его крайний электрон превысил бы скорость света.

Резерфордий и беззаконие

Тем не менее, на практике все оказывается сложнее. Во-первых, в ядрах тяжелых и сверхтяжелых элементов начинают проявляться релятивистские эффекты. Расчеты, прогнозирующие, где может закончиться таблица Менделеева, основаны на теории относительности. При увеличении ядра в нем становится все больше протонов, а значит, возрастает и сила притяжения, воздействующая на электроны. Соответственно, скорость крайних электронов растет, все существеннее приближаясь к скорости света.

Еще в 1990-е были поставлены первые эксперименты, показавшие, что резерфордий (104) и дубний (105) проявляют не те свойства, что положены им в соответствии с позициями в периодической системе. Согласно периодическому закону, они должны напоминать по свойствам те элементы, что расположены прямо над ними, соответственно, гафний и тантал. На самом же деле, резерфордий реагирует подобно плутонию, расположенному довольно далеко от него, а дубний – как протактиний. С другой стороны, сиборгий (106) и борий (107) следуют закону, выведенному Менделеевым.

Дальше – больше. Оказывается, рентгений (111) сближается по свойствам с астатом, а не с золотом, а коперниций (112) тяготеет по свойствам к благородным газам, даже сильнее, чем оганессон (118). Вероятно, теннессин (117) по свойствам скорее похож на галлий, а нихоний (113) сравним со щелочными металлами. Все эти аномалии связаны со все более выраженным проявлением релятивистских эффектов в сверхкрупных атомах.

Немного о корпускулярно-волновом дуализме

Боровская модель атома в той трактовке, согласно которой таблицу должен замыкать элемент № 137, также не вполне соответствует реальному положению вещей. Предмет квантовой физики гораздо сложнее, чем предмет классической; как правило, квантовые феномены не имеют наглядного аналога на макроуровне. Например, в соответствии с законами классической физики, электроны, обращающиеся вокруг ядра, обязаны падать на ядро, а атомы – схлопываться.

Казалось бы, само существование атома является опровержением законов физики. Но на самом деле все иначе. Классические законы непоколебимы, но электроны не падают на ядро, поскольку, строго говоря, электрон – не частица. Электрон подчиняется корпускулярно-волновому дуализму, то есть, одновременно проявляет черты частицы и волны, и поэтому не падает на ядро. Тем не менее, даже с учетом корпускулярно-волнового дуализма скорость электрона не может превышать скорость света в вакууме.

Мистер Фейнман собственной персоной

Суперкритические атомы не могут быть полностью ионизированы, поскольку на их первой электронной оболочке будет бурно происходить спонтанное рождение пар, при котором из моря Дирака всплывают электрон и позитрон, причем, электрон вплетается в атом, а позитрон улетает. Правда, поле сильного взаимодействия, окружающее атомное ядро, очень короткодействующее, так что принцип запрета Паули не допускает дальнейшего спонтанного рождения пар после заполнения тех оболочек, что погружены в море Дирака.

Элементы 173–184 названы слабо суперкритическими атомами, поскольку у них в море Дирака погружена только оболочка 1s; предполагается, что оболочка 2p1/2 будет полностью заполняться около элемента 185, а оболочка 2s – около элемента 245. Пока не удалось экспериментально добиться спонтанного рождения пар, пытаясь собрать суперкритические заряды путем столкновения тяжелых ядер (например, свинца с ураном, что могло бы дать Z = 174; урана с ураном, что дает Z = 184 и урана с калифорнием, что дает Z = 190). Возможно, в финале таблицы Менделеева ключевую роль будет играть ядерная нестабильность, а не нестабильность электронных оболочек.

Наконец, предполагается, что в регионе за Z > 300 может скрываться целый континент стабильности, состоящий из гипотетической кварковой материи (она же – квантово-хромодинамическая материя). Такая материя может состоять из свободных верхних и нижних кварков, а не из кварков, связанных в протоны и нейтроны. Предполагается, что это основное состояние барионной материи, обладающей большей энергией связи на барион, чем ядерная материя. Если такое состояние вещества реально, то, возможно, синтезировать его можно в ходе термоядерных реакций обычных сверхтяжелых ядер. Продукты таких реакций, благодаря высокой энергии связи, должны вполне преодолевать кулоновский барьер.

Пока все это теория, и мы, повторимся, успели заполнить лишь 7-й период таблицы Менделеева к 150-летию открытия Периодического Закона (1869-2019). Так или иначе, период полураспада новых тяжелых элементов стремительно сокращается; если у резерфордия-267 он составляет около 1,3 часов, то у рентгения-282 – всего 2,1 минуты, а у оганессона исчисляется сотнями микросекунд. Таким образом, финал близок, а за ним может открыться сиквел или режиссерская версия материального мира. Путь туда лежит через субсветовые орбитали фейнмания.

Читайте также: